Analytic combinatorics of coordination numbers of cubic lattices
نویسندگان
چکیده
We investigate coordination numbers of the cubic lattices with emphases on their analytic behaviors, including total positivity matrices, distribution zeros polynomials, asymptotic normality coefficients log-concavity and log-convexity numbers.
منابع مشابه
The Order Steps of an Analytic Combinatorics
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. This theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology and information theory. With a caref...
متن کاملAnalytic Combinatorics — Symbolic Combinatorics
This booklet develops in nearly 200 pages the basics of combinatorial enumeration through an approach that revolves around generating functions. The major objects of interest here are words, trees, graphs, and permutations, which surface recurrently in all areas of discrete mathematics. The text presents the core of the theory with chapters on unlabelled enumeration and ordinary generating func...
متن کاملAnalytic Combinatorics of Non-crossing Conngurations Analytic Combinatorics of Non-crossing Conngurations Analytic Combinatorics of Non-crossing Conngurations
This paper describes a systematic approach to the enumeration of \non-crossing" geometric conngurations built on vertices of a convex n-gon in the plane. It relies on generating functions, symbolic methods, singularity analysis, and singularity perturbation. A consequence is exact and asymptotic counting results for trees, forests, graphs, connected graphs, dissections, and partitions. Limit la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2023
ISSN: ['1090-2074', '0196-8858']
DOI: https://doi.org/10.1016/j.aam.2023.102518